针对电梯导靴振动信号采用经验模态分解(Empirical Mode Decomposition,EMD)难以直接提取早期微弱故障特征的问题,提出基于奇异值分解(Singular Value Decomposition,SVD)优化经验模态分解的电梯导靴振动信号故障特征提取方法。该方法首先对原始信号进行SVD分解,通过奇异值贡献率原则来确定相空间重组的最佳Hankel矩阵结构,利用曲率谱原则与奇异值贡献率原则相结合来确定有效奇异值的阶次;筛选出包含主要故障信息的奇异值进行信号重构,得到剔除噪声信号与光滑信号的突变信号;然后对突变信号进行EMD分解,得到信号的本征模态函数(Intrinsic Mode Function,IMF)分量。最后,对IMF分量作Hilbert变换,求得其Hilbert边际谱,从而获得电梯导靴故障特征频率信息。仿真结果表明该方法有效改善了EMD难以直接提取早期微弱故障特征的问题,更准确地提取了振动信号的故障特征频率,验证了所述方法的有效性。 表1导靴参数Ta称尺寸(mm)长度220导轨槽宽16导轨槽深25本文的振动信号采集装置为三维陀螺仪加速度传感器,将其固定在轿厢与导靴相互接触的地面上进行检测,采用动态卡尔曼滤波算法振动信号故障-电动折弯机数控滚圆机滚弧机张家港电动液压滚圆机滚弧机。当导靴两侧出现磨损时,轿厢在与导靴两侧垂直方向的振动信号会产生冲击特性。3.2信号处理与分析本文采集轿厢导靴正常运行时的振动信号如图1所示,轿厢下导靴故障振动信号如图2所示。对比图1本文由公司网站滚圆机网站采集转载中国知网资源整理!www.gunyuanj
- [2019-08-06]传感器优化设计-液压电动滚圆机
- [2019-08-06]界面自组装-数控滚圆机滚弧机电
- [2019-08-06]澄清效果的影响-数控滚圆机滚弧
- [2019-08-05]刚度的解析公式-数控滚圆机滚弧
- [2019-08-05]制备及缓释性能-数控滚圆机滚弧
- [2019-08-05]组振动建模研究-数控滚圆机滚弧
- [2019-08-04]模型的风电功率预测-数控滚圆机
- [2019-08-04]最大准入容量计算-数控滚圆机滚
- [2019-08-03]传输电缆建模研究-数控滚圆机滚
- [2019-08-03]风电网损及运行-数控滚圆机滚弧