在云计算提供高效,便捷等强大服务的背后,是日益攀升的能耗问题。准确的预测云平台的负载(如CPU,内存的使用)在任务调度,云能效方面具有重要意义。在以往研究中,线性自回归算法在预测请求资源的粒度上存在不足,本文提出一种基于BP神经网络与遗传算法混合的负载预测方法,结合遗传算法良好的全局搜索能力与神经网络强大的非线性拟合能力,建立CPU资源的请求预测模型。实验通过Google的云平台数据作为训练,测试集。实验结果表明该方法有效的预测了CPU资源请求量,进而可以在此基础上调整服务资源,实现绿色调度。 件20《软件》杂志欢迎推荐投稿:cosoft@vip.163.com度可变的简单模型,按不同的连接方式组成不同的网络。本文由公司网站滚圆机网站采集转载中国知网资源整理!www.gunyuanj
- [2019-08-06]传感器优化设计-液压电动滚圆机
- [2019-08-06]界面自组装-数控滚圆机滚弧机电
- [2019-08-06]澄清效果的影响-数控滚圆机滚弧
- [2019-08-05]刚度的解析公式-数控滚圆机滚弧
- [2019-08-05]制备及缓释性能-数控滚圆机滚弧
- [2019-08-05]组振动建模研究-数控滚圆机滚弧
- [2019-08-04]模型的风电功率预测-数控滚圆机
- [2019-08-04]最大准入容量计算-数控滚圆机滚
- [2019-08-03]传输电缆建模研究-数控滚圆机滚
- [2019-08-03]风电网损及运行-数控滚圆机滚弧