由于网络流量动态变化,控制器负载均衡成为大规模部署软件定义网络研究的重点。提出基于Q-learning的动态交换机迁移算法,首先对软件定义网络中的控制器部署问题建模,再应用Q-learning反馈机制学习实时网络流量,最后根据Q表格将交换机从高负载控制器动态迁移到低负载控制器上,实现控制器的负载均衡。仿真结果表明,所提算法能够获得较低的控制器负载标准方差。网络具有交换与传输分离的特征,用户可以在控制平面上自定义网络控制与管理策略,数据平面由只负责数据转发的交换机互联组成。在大规模部署的SDN网络中,多个控制器相互连接构成集中式控制平面,交换机连接在控制器上本文由公司网站滚圆机网站采集转载中国知网资源整理!www.gunyuanj
- [2019-08-06]传感器优化设计-液压电动滚圆机
- [2019-08-06]界面自组装-数控滚圆机滚弧机电
- [2019-08-06]澄清效果的影响-数控滚圆机滚弧
- [2019-08-05]刚度的解析公式-数控滚圆机滚弧
- [2019-08-05]制备及缓释性能-数控滚圆机滚弧
- [2019-08-05]组振动建模研究-数控滚圆机滚弧
- [2019-08-04]模型的风电功率预测-数控滚圆机
- [2019-08-04]最大准入容量计算-数控滚圆机滚
- [2019-08-03]传输电缆建模研究-数控滚圆机滚
- [2019-08-03]风电网损及运行-数控滚圆机滚弧