为实现等离子体和催化材料的紧密结合,构建了电晕放电极、辅助电极、催化材料和接地极组成的反电晕放电体系。采用伏安特性、图像分析、发射光谱和粒子成像测速技术研究反电晕放电过程和等离子体特性。结果表明:基于直流电晕放电,在颗粒层或蜂窝表面和孔道中发生二次放电,产生了反电晕等离子体;发生反电晕时,电流显著增大,在相同电压条件下,反电晕电流是典型的电晕放电电流的2倍以上;反电晕放电区域主要是N2的第二正系激发态物质,波长为337.13 nm和357.69 nm的发射光谱强度较大;反电晕改变了放电区域的流场,产生的离子风速度超过1.0 m/s;辅助网电极限制了蜂窝表面和孔道的流光向火花放电发展,实现稳定的反电晕放电。 分激发产生的光谱,这表明反电晕条件下,材料可参与化学反应[23]。因此,固体表面反电晕放电能够在材料空隙上原位产生等离子体;当固体是催化剂时,等离子体和催化剂可实现紧密结合等离子体发生法-电动折弯机数控滚圆机滚弧机张家港全自动滚圆机滚弧机,有利于提高协同效应。本文研究一种基于直流电晕放电,在催化剂上发生反电晕放电的等离子体发生方法。通过研究颗粒层的反电晕放电现象,进一步构建由电晕电极 本文由公司网站滚圆机网站采集转载中国知网资源整理!www.gunyuanj
- [2019-08-06]传感器优化设计-液压电动滚圆机
- [2019-08-06]界面自组装-数控滚圆机滚弧机电
- [2019-08-06]澄清效果的影响-数控滚圆机滚弧
- [2019-08-05]刚度的解析公式-数控滚圆机滚弧
- [2019-08-05]制备及缓释性能-数控滚圆机滚弧
- [2019-08-05]组振动建模研究-数控滚圆机滚弧
- [2019-08-04]模型的风电功率预测-数控滚圆机
- [2019-08-04]最大准入容量计算-数控滚圆机滚
- [2019-08-03]传输电缆建模研究-数控滚圆机滚
- [2019-08-03]风电网损及运行-数控滚圆机滚弧